Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Niche-specific metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in differential use of nutrients, variation in gene content, and enzyme evolution.

Identifieur interne : 000443 ( Main/Exploration ); précédent : 000442; suivant : 000444

Niche-specific metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in differential use of nutrients, variation in gene content, and enzyme evolution.

Auteurs : Audrey M V. Ah-Fong [États-Unis] ; Meenakshi S. Kagda [États-Unis] ; Melania Abrahamian [États-Unis] ; Howard S. Judelson [États-Unis]

Source :

RBID : pubmed:31002734

Descripteurs français

English descriptors

Abstract

The use of host nutrients to support pathogen growth is central to disease. We addressed the relationship between metabolism and trophic behavior by comparing metabolic gene expression during potato tuber colonization by two oomycetes, the hemibiotroph Phytophthora infestans and the necrotroph Pythium ultimum. Genes for several pathways including amino acid, nucleotide, and cofactor biosynthesis were expressed more by Ph. infestans during its biotrophic stage compared to Py. ultimum. In contrast, Py. ultimum had higher expression of genes for metabolizing compounds that are normally sequestered within plant cells but released to the pathogen upon plant cell lysis, such as starch and triacylglycerides. The transcription pattern of metabolic genes in Ph. infestans during late infection became more like that of Py. ultimum, consistent with the former's transition to necrotrophy. Interspecific variation in metabolic gene content was limited but included the presence of γ-amylase only in Py. ultimum. The pathogens were also found to employ strikingly distinct strategies for using nitrate. Measurements of mRNA, 15N labeling studies, enzyme assays, and immunoblotting indicated that the assimilation pathway in Ph. infestans was nitrate-insensitive but induced during amino acid and ammonium starvation. In contrast, the pathway was nitrate-induced but not amino acid-repressed in Py. ultimum. The lack of amino acid repression in Py. ultimum appears due to the absence of a transcription factor common to fungi and Phytophthora that acts as a nitrogen metabolite repressor. Evidence for functional diversification in nitrate reductase protein was also observed. Its temperature optimum was adapted to each organism's growth range, and its Km was much lower in Py. ultimum. In summary, we observed divergence in patterns of gene expression, gene content, and enzyme function which contribute to the fitness of each species in its niche.

DOI: 10.1371/journal.ppat.1007729
PubMed: 31002734
PubMed Central: PMC6493774


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Niche-specific metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in differential use of nutrients, variation in gene content, and enzyme evolution.</title>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kagda, Meenakshi S" sort="Kagda, Meenakshi S" uniqKey="Kagda M" first="Meenakshi S" last="Kagda">Meenakshi S. Kagda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abrahamian, Melania" sort="Abrahamian, Melania" uniqKey="Abrahamian M" first="Melania" last="Abrahamian">Melania Abrahamian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31002734</idno>
<idno type="pmid">31002734</idno>
<idno type="doi">10.1371/journal.ppat.1007729</idno>
<idno type="pmc">PMC6493774</idno>
<idno type="wicri:Area/Main/Corpus">000497</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000497</idno>
<idno type="wicri:Area/Main/Curation">000497</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000497</idno>
<idno type="wicri:Area/Main/Exploration">000497</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Niche-specific metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in differential use of nutrients, variation in gene content, and enzyme evolution.</title>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kagda, Meenakshi S" sort="Kagda, Meenakshi S" uniqKey="Kagda M" first="Meenakshi S" last="Kagda">Meenakshi S. Kagda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abrahamian, Melania" sort="Abrahamian, Melania" uniqKey="Abrahamian M" first="Melania" last="Abrahamian">Melania Abrahamian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glucan 1,4-alpha-Glucosidase (metabolism)</term>
<term>Host-Parasite Interactions (genetics)</term>
<term>Nutrients (metabolism)</term>
<term>Phytophthora (classification)</term>
<term>Phytophthora (genetics)</term>
<term>Phytophthora (physiology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (parasitology)</term>
<term>Plant Tubers (growth & development)</term>
<term>Plant Tubers (metabolism)</term>
<term>Plant Tubers (parasitology)</term>
<term>Solanum tuberosum (growth & development)</term>
<term>Solanum tuberosum (metabolism)</term>
<term>Solanum tuberosum (parasitology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Glucan 1,4-alpha-glucosidase (métabolisme)</term>
<term>Interactions hôte-parasite (génétique)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (parasitologie)</term>
<term>Nutriments (métabolisme)</term>
<term>Phytophthora (classification)</term>
<term>Phytophthora (génétique)</term>
<term>Phytophthora (physiologie)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Solanum tuberosum (croissance et développement)</term>
<term>Solanum tuberosum (métabolisme)</term>
<term>Solanum tuberosum (parasitologie)</term>
<term>Tubercules (croissance et développement)</term>
<term>Tubercules (métabolisme)</term>
<term>Tubercules (parasitologie)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glucan 1,4-alpha-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Solanum tuberosum</term>
<term>Tubercules</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Host-Parasite Interactions</term>
<term>Phytophthora</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Tubers</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Interactions hôte-parasite</term>
<term>Maladies des plantes</term>
<term>Phytophthora</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Nutrients</term>
<term>Plant Tubers</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucan 1,4-alpha-glucosidase</term>
<term>Nutriments</term>
<term>Protéines fongiques</term>
<term>Solanum tuberosum</term>
<term>Tubercules</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Solanum tuberosum</term>
<term>Tubercules</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Tubers</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The use of host nutrients to support pathogen growth is central to disease. We addressed the relationship between metabolism and trophic behavior by comparing metabolic gene expression during potato tuber colonization by two oomycetes, the hemibiotroph Phytophthora infestans and the necrotroph Pythium ultimum. Genes for several pathways including amino acid, nucleotide, and cofactor biosynthesis were expressed more by Ph. infestans during its biotrophic stage compared to Py. ultimum. In contrast, Py. ultimum had higher expression of genes for metabolizing compounds that are normally sequestered within plant cells but released to the pathogen upon plant cell lysis, such as starch and triacylglycerides. The transcription pattern of metabolic genes in Ph. infestans during late infection became more like that of Py. ultimum, consistent with the former's transition to necrotrophy. Interspecific variation in metabolic gene content was limited but included the presence of γ-amylase only in Py. ultimum. The pathogens were also found to employ strikingly distinct strategies for using nitrate. Measurements of mRNA, 15N labeling studies, enzyme assays, and immunoblotting indicated that the assimilation pathway in Ph. infestans was nitrate-insensitive but induced during amino acid and ammonium starvation. In contrast, the pathway was nitrate-induced but not amino acid-repressed in Py. ultimum. The lack of amino acid repression in Py. ultimum appears due to the absence of a transcription factor common to fungi and Phytophthora that acts as a nitrogen metabolite repressor. Evidence for functional diversification in nitrate reductase protein was also observed. Its temperature optimum was adapted to each organism's growth range, and its Km was much lower in Py. ultimum. In summary, we observed divergence in patterns of gene expression, gene content, and enzyme function which contribute to the fitness of each species in its niche.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31002734</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>Niche-specific metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in differential use of nutrients, variation in gene content, and enzyme evolution.</ArticleTitle>
<Pagination>
<MedlinePgn>e1007729</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1007729</ELocationID>
<Abstract>
<AbstractText>The use of host nutrients to support pathogen growth is central to disease. We addressed the relationship between metabolism and trophic behavior by comparing metabolic gene expression during potato tuber colonization by two oomycetes, the hemibiotroph Phytophthora infestans and the necrotroph Pythium ultimum. Genes for several pathways including amino acid, nucleotide, and cofactor biosynthesis were expressed more by Ph. infestans during its biotrophic stage compared to Py. ultimum. In contrast, Py. ultimum had higher expression of genes for metabolizing compounds that are normally sequestered within plant cells but released to the pathogen upon plant cell lysis, such as starch and triacylglycerides. The transcription pattern of metabolic genes in Ph. infestans during late infection became more like that of Py. ultimum, consistent with the former's transition to necrotrophy. Interspecific variation in metabolic gene content was limited but included the presence of γ-amylase only in Py. ultimum. The pathogens were also found to employ strikingly distinct strategies for using nitrate. Measurements of mRNA, 15N labeling studies, enzyme assays, and immunoblotting indicated that the assimilation pathway in Ph. infestans was nitrate-insensitive but induced during amino acid and ammonium starvation. In contrast, the pathway was nitrate-induced but not amino acid-repressed in Py. ultimum. The lack of amino acid repression in Py. ultimum appears due to the absence of a transcription factor common to fungi and Phytophthora that acts as a nitrogen metabolite repressor. Evidence for functional diversification in nitrate reductase protein was also observed. Its temperature optimum was adapted to each organism's growth range, and its Km was much lower in Py. ultimum. In summary, we observed divergence in patterns of gene expression, gene content, and enzyme function which contribute to the fitness of each species in its niche.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ah-Fong</LastName>
<ForeName>Audrey M V</ForeName>
<Initials>AMV</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kagda</LastName>
<ForeName>Meenakshi S</ForeName>
<Initials>MS</Initials>
<Identifier Source="ORCID">0000-0003-0545-0185</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abrahamian</LastName>
<ForeName>Melania</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Judelson</LastName>
<ForeName>Howard S</ForeName>
<Initials>HS</Initials>
<Identifier Source="ORCID">0000-0001-7865-6235</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>S10 OD016290</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.3</RegistryNumber>
<NameOfSubstance UI="D005087">Glucan 1,4-alpha-Glucosidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005087" MajorTopicYN="N">Glucan 1,4-alpha-Glucosidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035281" MajorTopicYN="N">Plant Tubers</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31002734</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1007729</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-18-02307</ArticleId>
<ArticleId IdType="pmc">PMC6493774</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2016 Oct;39(10):2172-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27239727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Jan 19;12:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21247492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Dec;37(12):1372-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16311593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24649486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2010;79:471-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20235827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 2000 Apr;263(3):463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10821180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Oct;52(363):1981-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11559733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):431-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Jun;19(6):1403-1413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28990716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 2000;42:47-238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10907551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1993;27:115-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8122899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Methods Programs Biomed. 2013 Jan;109(1):26-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23021091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(7):R73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1990 Sep;54(3):266-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2215422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35993</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22558298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Apr;17(3):313-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jun 1;68(12):3045-3055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28077447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Jun;213(2):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11469589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Aug 1;35(8):1968-1981</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29788479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jul;23(7):2788-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21784950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2017 Sep 8;71:21-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28504899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2015 Aug;34:16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25461507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Nov 23;539(7630):524-529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27882964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Jan;19(1):227-237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27785876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1967 Jul;104(1):103-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4382427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Jun;31(6):665-677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29419371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Feb;12(2):194-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23204192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Dec;103(4):1437-1445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Aug;108(8):916-924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29979126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 28;11(5):e1004805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2018 Jul 10;9:244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30042788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1997 Mar;61(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9106362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Apr;195(8):1741-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23396912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Persoonia. 2015 Jun;34:25-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26240443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D675-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22064857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15258-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Jan;266(1):65-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Aug;10(8):1902-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26784354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1993 Aug 1;212(2):359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8214577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2017 Apr 28;1(6):149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28812634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 1963 Oct;102:573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14071658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Dec 9;12(12):e1006097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27936244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2012 Mar;12(2):104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22128902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 05;5:597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2003 Feb;78(1):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12655135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Med. 2014 Sep 04;4(12):a019695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25190251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2016 Feb 22;428(4):726-731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26585406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Oct 10;18(1):764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29017458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2015 Sep;79(3):263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26041933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Oct 14;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26465114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Mar 14;12(3):e1005485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26974960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Dec;28:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26343014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Oct 31;2(10):e1097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Oct;127(2):685-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2018 Nov;110(4):562-575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30194883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jul 02;5:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25071800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1469-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Feb 24;9(2):e89643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Nov;97(3):990-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:91-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Nov 04;5:15565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26531059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Sep;44(9):1060-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2018 Feb;74:105-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28705659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2018 Jul 1;34(13):i43-i51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29949964</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
</noRegion>
<name sortKey="Abrahamian, Melania" sort="Abrahamian, Melania" uniqKey="Abrahamian M" first="Melania" last="Abrahamian">Melania Abrahamian</name>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<name sortKey="Kagda, Meenakshi S" sort="Kagda, Meenakshi S" uniqKey="Kagda M" first="Meenakshi S" last="Kagda">Meenakshi S. Kagda</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000443 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000443 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31002734
   |texte=   Niche-specific metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in differential use of nutrients, variation in gene content, and enzyme evolution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31002734" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024